Google search
Sponser one
วันเสาร์ที่ 19 กันยายน พ.ศ. 2552
Should consider in raw material filtration that is amino acids source
Uses amino acids in the feed
The effect is in case of animal not take the amino acids
วันศุกร์ที่ 18 กันยายน พ.ศ. 2552
Poison occurrence of Amino acids
Equilibrium of the nitrogen
Ideal protein
Amino acids be related to with what kind is a substance ?
How many is amino acids can distribute to is the group ?
How many is the amino acid has the format?
How is the protein has come to ?
How is the amino acid has come to ?
Come to know the amino acids
วันอังคารที่ 15 กันยายน พ.ศ. 2552
Function of Vitamin K
Source of Vitamin K
Vitamin K (napthoquinone)
วันศุกร์ที่ 11 กันยายน พ.ศ. 2552
Function and Metabolism of B12
Absorption and Transportation of B12
วิตามินบีสิบสองในอาหารส่วนใหญ่จะอยู่ในรูปของโคเอนไซม์ที่จับอยู่กับโปรตีน ซึ่งจะถูกสลายได้บ้างในขณะประกอบอาหาร และโดยความเป็นกรดหรือเอนไซม์ pepsin ในกระเพาะอาหารจะสลายให้ได้วิตามินบีสิบสองเสรีออกมา ในผู้ที่ไม่มีกรดในกระเพาะอาหาร หรือถูกตัดกระเพาะอาหารบางส่วนออกไป จะทำให้วิตามินบีสิบสองไม่แยกออกมา และทำให้การดูดซึมช้าลง อย่างไรก็ตามโคบาลามินก็อาจถูกปล่อยออกมาได้เมื่ออยู่ในลำไส้โดยอาศัยเอนไซม์ protase จากตับอ่อน การดูดซึมวิตามินบีสิบสองเป็นการดูดซึมที่ต่างจากสารอาหารชนิดอื่นๆ เนื่องจากต้องมีปัจจัยหลายชนิดเข้ามาเกี่ยวข้อง
Cyanocobalamin
ชนิดของวิตามินบี 12 ในธรรมชาติจะมี Cyanocobalamin น้อยมาก ที่ได้มักเกิดจาก contaminate จากสารเคมีที่ใช้ในการ extract ชนิดที่พบมากตามธรรมชาติมักเป็น hydroxcobalamin ซึ่งแยกได้จากตับเป็นส่วนมาก ชนิดของวิตามินบี 12 มีต่างๆ กัน ดังต่อไปนี้ คือ :-
1) Cyanocobalamin เมื่อตกผลึกจะให้สีแดงเข้ม มีรูปร่างคล้ายเข็ม มีสูตรว่า C63H88O14N14Pco มีน้ำหนักโมเลกุล 1355 ละลายน้ำได้ดี มี absorption ในน้ำสูงสุดที่ 178, 361 และ 550 มิลิไมครอนวิตามินบี 12 มี Co จับอยู่ที่ 4 reduced pyrrol ring มี nucleotide ที่ต่างจาก nucleotides ในกรดนิวคลีอิค คือ ไม่ใช่ purine หรือ pyrimidine แต่มี base คือ 5,6 – dimethylbenziminazole แทน ถ้าถูกแสงจะกลายเป็น hydroxocobalamin
2) Hydroxocobalamin (B12a) และ Aquocobalamin (B12b) เตรียมได้จากการ reduction วิตามินบี 12 มีลักษณะคล้าย Aqocobalamin แตกต่างกันที่ OH group จับกับ Co เป็น hydroxocobalamin และ H2O group จับที่ Co เป็น Aquocobalamin ในภาวะที่เป็นกลาง จะอยู่ในรูปของ hydroxocobalamin แต่ถ้าเป็นกรดจะกลายเป็น Aquocobalaminกลุ่ม OH นี้อาจแทนที่ด้วย suphite, chloro, cyano, nitrito (nitro), bromo และ thiocyanate group
3) Nitritocobalamin (B12c) จะมี group NO2 มาแทนที่ CN วิตามินบี 12 ชนิดนี้จะพบในแบคทีเรียบางชนิดเท่านั้น
4) Pseudocobalamin (B12f) เกิดจาก micro-organism ไปเปลี่ยนวิตามิน B12b ด้วยการแทนที่ benzimidazol ด้วย purine base เช่น adenine เป็นต้น วิตามิน B12f นี้จะ inactive ในร่างกายมนุษย์ แต่จะมีฤทธิ์ช่วยในการเจริญเติบโตของแบคทีเรียหลายชนิด
5) Deoxyadenosylcobalamin ต่างจาก cyanocobalamin ที่มี deoxyadenosyl มาแทนที่ CN โดยจับกับ Co ด้วย covalent bond สารนี้ไวต่อแสงและภาวะที่เป็นกรดมาก จะกลายจากสีเหลืองเป็นสีแดง เพราะกลายเป็น hydroxocobalamin วิตามินบี 12 ชนิดนี้พบในตับของมนุษย์และสัตว์
6) Methylcobalamin มี CH3 มาจับกับ Co จะพบวิตามินบี 12 ในรูปนี้ในพลาสม่าและตับ มีคุณสมบัติที่ไวต่อแสงมาก ถ้ามีอ๊อกซิเจนมากพอจะเกิด photolyse ไปเป็น hydroxocobalamin และ formaldehyde
Vitamin B12
ลักษณะทั่วไปของวิตามินบี 12 วิตามินบี 12 ประกอบด้วยส่วนสำคัญ 2 ส่วน คือ ส่วนแรกเรียกว่า Corrin ring ซึ่งมีลักษณะคล้ายๆ porphyrine มาก กับส่วนที่สองเป็น nucleotide วิตามินบี 12 มีชื่อเต็มๆ ว่า alpha (5,6-dimethyl benziminazolyl cobamide cyanide อาจเรียกย่อๆ ว่า cyanocobalamin โดยมี Cyanide (CN) มาแทนที่ R ถ้าแทนที่ด้วยตัวอื่นๆ จะมีชื่อต่างๆ ดังนี้ :- R group ชื่อ = OH Hydroxycobalamin หรือ B12a = H2O Aquocobalamin หรือ B12a = NO2 Nitrocobalamin = CH3 Methylcobalamin deoyadenosyl Deoxyadenosyl cobalamin เพื่อความสะดวกในการเรียก จะขอใช้ตัวย่อ B12 แทน Cobalamin ฉะนั้น methyl cobalamin จะเรียกว่า methyl-B12 เป็นต้น
วันพฤหัสบดีที่ 10 กันยายน พ.ศ. 2552
Storage and Excretion and Tissue distribution of Folate
Storage
Folacin มีการกระจายตัวโดยทั่วไป โดยอยู่ในรูป polyglutamate โดยปกติร่างกายจะมีการเก็บ Folacin ในปริมาณ 5-10 mg. ครึ่งหนึ่งจะเก็บไว้ที่ตับ ในร่างกายที่แข็งแรงและมีอาหารที่มีองค์ประกอบของสารอาหารทีดี ร่างกายสามารถเก็บ folate ได้นาน 4-5 เดือน (ในวัยโต) ส่วนการเก็บ Folacin ในช่วงวัยอนุบาลเก็บได้น้อยเนื่องจากต้องมีการนำไปใช้มาก ภายใต้สภาพการขาดวิตามิน B12 จะทำให้การเปลี่ยนแปลงของ pteroylmonoglutamates เพื่อที่จะเป็น polyglutamate forms น้อยลง ยังเป็นผลให้ความสามารถในการคง folacin ใน intracellular ลดลง ลักษณะการขาดวิตามิน B12 จะคล้ายกับการขาด folacin
Excretion
การขับ folacin ออกนอกร่างกาย จะพบว่ามีการขับ folacin ออกในรูปของปัสสาวะ น้อยกว่าการขับออกในรูปของมูล ซึ่งก็ขึ้นอยู่กับปริมาณอาหารที่กินเข้าไปด้วย ในบางครั้งก็พบว่า มี folacin ที่ถูกขับถ่ายมากกว่าที่กินเข้าไป ก็เนื่องจาก แบคทีเรียในทางเดินอาหารก็สามารถสังเคราะห์วิตามิน folacin ได้ที่ลำไส้ เช่นเดียวกัน Folacin จะมีการขับทางน้ำดีอีกทางหนึ่ง และส่วนใหญ่จะถูกดูดซึมกลับ ทาง enterohepatic circulation อีกด้วย
Tissue distribution
ในมนุษย์จะมี folate อยู่ภายในร่างกาย 5-10 mg และกว่าครึ่งจะสะสมอยู่ที่ตับในรูปของ tetra-, penta-, hexa- and hepta- glutamates of 5-methyl-FH4 and 10-formyl-FH4 ปริมาณความสัมพันธ์ของ 2 อนุพันธ์คาร์บอนเดี่ยว (single - C) ขึ้นอยู่กับอัตราของการแบ่งตัวของเซลล์ในเนื้อเยื่อจำพวก ที่มีการแบ่งตัวอย่างรวดเร็ว เช่น intestinal mucosa, regenerating liver, carcinoma จะมีความเข้มข้นของ 5-methyl-FH4 ต่ำ และพบว่า 10-formyl-FH4 จะสูงขึ้น สรุปแล้วเนื้อเยื่อที่มีอัตราการแบ่งตัวของเซลล์ต่ำ เช่น ตับ จะมี 5-methyl-FH4 เป็นตัวตั้งต้น และสามารถทำนายเนื้อเยื่อ FBPs ที่จับกับ Polyglutamate forms ของวิตามิน จะมีบทบาทที่สำคัญในการทำให้ folate มีสภาพที่คงตัวได้ในเซลล์ และยังช่วยเพิ่มอัตราเมตาบอลิซึมย้อนกลับ อีกทั้งเพิ่ม Intracellular retention อีกด้วย
Conclution metabolism of Folate
Metabolism of FOLATE
Absorption of FOLATE
Transport of FOLATE
Physiological function of FOLATE (B 9)
· เม็ดเลือดแดง และ เซลล์เยื่อบุทางเดินอาหาร ในเนื้อเยื่อต่าง ๆ ในร่างกายสัตว์ที่เก็บสะสมโฟเลตไว้ เม็ดเลือดแดงจะเป็นข้อบ่งบอกถึงการสะสมของโฟเลตได้ดีที่สุด การลดลงของโฟเลตในตับจะผันแปรไปกับการลดลงของโฟเลตในเม็ดเลือดแดง (ในตับรักษาโฟเลตได้ 4 เดือน) การขาดโฟเลต หรือได้รับโฟเลตไม่เพียงพอจะทำให้สัตว์เกิดโรคเลือดจางชนิด megaloblastic ที่ไขกระดูกขึ้นได้ มีผลทำให้เม็ดเลือดแดงที่ไหลเวียนในระบบมีจำนวนลดลง แต่มีขนาดที่ใหญ่ขึ้น มี cytoplasm เพิ่มขึ้น และเม็ดเลือดมีอายุที่สั้นลง เม็ดเลือดมีการแตกตัวได้ง่าย การขาดโฟเลตจะแสดงอาการผิดปกติของเม็ดเลือดก่อน ทำให้เม็ดเลือดแดงมีขนาดที่ใหญ่ขึ้น neutrophil มีการแบ่ง lobe ที่ผิดปกติจาก 3 lobe เป็น 5 lobe จากนั้นจะแสดงอาการเลือดจางตามมา ลักษณะของสัตว์ที่ขาดโฟเลต มีอาการเหนื่อย หอบ ผิวซีด
· มีความสำคัญต่อการสังเคราะห์ methionine การขาดวิตามินบี 12 จะทำให้เมตาบอลิซึมของโฟเลต และการสังเคราะห์ methionine ผิดปกติไปด้วย
· มีความสำคัญต่อกระบวนการสังเคราะห์ nucleic acid
· มีความสำคัญในปฎิกริยา interconversion ของกรดอะมิโน เช่น ในการเปลี่ยนกรดอะมิโน serine ไปเป็น glycine เป็นต้น
· มีความสำคัญต่อระบบทางเดินอาหาร การดูดซึมของโภชนะในอาหารจะมีการผิดปกติ หากในอาหารบางชนิดมีสารที่ไปยับยั้งเอนไซม์ conjugase ที่ใช้ย่อย polyglutamate ให้เป็น monoglutamate ซึ่งจะมีผลทำให้การดูดซึมโฟเลตลดน้อยลง ทำให้ร่างกายของสัตว์ขาดโฟเลตได้ การขาดโฟเลตจะมีอาการของลิ้นและปากอักเสบ ท้องเดิน ปวดท้อง กรดในกระเพาอาหารน้อยลง เบื่ออาหาร (มีอาการคล้ายกับการขาดวิตามินบี 12)
· มีความสำคัญต่อสัตว์ที่กำลังตั้งครรภ์ สัตว์ที่กำลังมีครรภ์จะมีความต้องการโฟเลตมากขึ้นจากปกติมาก เนื่องจากต้องนำไปใช้ในกระบวนการแบ่งเซลล์ และการเจริญเติบโตของตัวอ่อน การขยายตัว การเพิ่มปริมาณเลือด วัตถุดิบอาหารสัตว์ และอาหารที่มีการผ่านกระบวนการบดอัด ผ่านความร้อน จะทำให้โฟเลตถูกทำลายมากขึ้น ซึ่งต้องระมัดระวังในจุดนี้ด้วยครับ
วันพุธที่ 9 กันยายน พ.ศ. 2552
Source and Bioavailability of Pyridoxine
Bioavailability วิตามินบีหก ในอาหารจะมีการสูญเสียคุณสมบัติไปบ้างในขณะที่มีการประกอบอาหาร โดยการแตกสลายของอณู หรือเกิดการเปลี่ยนแปลงเป็นสารใหม่ เช่น pyridoxal และ pyridoxamine จะไปรวมกับหมู่ –NH2 หรือ –SH ที่อยู่ในโปรตีนทำให้เกิดสารพวก aldimine หรือ ketomine เช่น pyridoxyl – -aminolysine และ cystine-bond pyridoxal ซึ่งสามารถไปจับกับโลหะบางชนิด ทำให้เสียคุณสมบัติของการเป็นวิตามินไป วิตามินบีหกที่จับอยู่กับโปรตีนดังกล่าวจะมีประโยชน์ต่อร่างกายน้อยมาก วิตามินบีหกรวมกับน้ำตาลกลูโคสได้สารประกอบที่มีชื่อว่า 5- -glucopyranosyl-pyridoxine ซึ่งเป็นสารชนิดแรกที่พบในข้าว glucoside ดังกล่าวพบว่ามี biovalability เพียง 20-30 % สำหรับในคนเอนไซม์ในลำไส้จะย่อย glucoside ที่กินเข้าไปเป็นการช่วยเพิ่ม biovailability ของวิตามีนบีหก อาหารที่ได้จากสัตว์จะมี biovailability มากกว่าในพืช
absorption and Function of Pyridoxine
Deficiency and Antagonist of Pyridoxine
ผลของการได้รับวิตามินบี 6 มากเกิน จากการศึกษาพบว่าถึงแม้ฉีดเข้าเส้นไปในปริมาณ 200 มิลลิกรัม ก็ไม่มีพิษเกิดขึ้นและการได้รับทางปากในปริมาณ 100 - 300 มิลลิกรัมต่อวัน ก็ไม่ปรากฏว่าการเป็นพิษเกิดขึ้นเช่นกัน แต่ถ้ากินขนาดเป็นกรัม หลายเดือน เช่นขนาด 6 กรัมนาน 2 เดือน เพื่อรักษาอาการปวดท้องก่อนการมีประจำเดือน จะมีผลต่อระบบประสาท มีอาการเดินเซ รอบ ๆ ปาก มือ และเท้าชา ตรวจร่างกายพบว่าเสียความรู้สึกในการรับรู้ตำแหน่งการสั่นสะเทือนของปลายแขนและขา ความเจ็บปวด ความรู้สึกร้อน การรับรู้สัมผัส และการสะท้อน (Reflex) อาการจะดีขึ้นเมื่อหยุดวิตามิน บีหกแล้ว 6 เดือน
Advantage of the vitamin B 6 on Animals
สารหรืออาหารเสริมฤทธิ์ 1. วิตามิน บีรวม (B-Complex) 2. วิตามิน บีหนึ่ง บีสอง บีห้า 3. วิตามินซี วิตามิน เอฟ (Linoleic acid) 4. แมกนีเซียม โปตัสเซียม
สารหรืออาหารต้านฤทธิ์ 1. ยาพวกคอร์ติโซน (Cortisone) 2. ฮอร์โมนเอสโทรเจน (Estrogen) 3. ยาคุมกำเนิดชนิดรับประทาน
Source of Pyridoxine
วิตามินบี 6
PYRIDOXINE
ลักษณะทั่วไปของ Pyridoxine วิตามินบีหก มีลักษณะโครงสร้าง 3 แบบ คือ ไพริดอกซีน (Pyridoxine) อยู่ในรูปของแอลกอฮอล์ ไพริดอกซาล (Pyridoxal) อยู่ในรูปของแอลดีไฮด์ และไพริดอกซามิน (Pyridoxamine) อยู่ในรูปของเอมีน มีสูตรโครงสร้างประกอบด้วยวงแหวนไพริดิน (Pyridine) ถ้ามีลักษณะเป็นผลึกจะเป็นสีขาว ไม่มีกลิ่น มีรสเค็ม ละลายในน้ำได้ และละลายในสารละลายที่เป็นกรดและด่างปานกลาง แต่สลายตัวได้ง่ายเมื่อถูกแสงแดด ไพริดอกซีน (Pyridoxine) ทนต่อความร้อนมากกว่าไพริดอกซาล (Pyridoxal) และไพริดอกซามิน (Pyridoxamine) วิตามินบีหก จัดอยู่ในวิตามินประเภทละลายในน้ำ (Water- Soluble) เป็นสมาชิกสำคัญของวิตามินบีรวม (B Complex) วิตามินบีหก คงทนต่อความร้อนได้ดีเมื่ออยู่ในสารละลายที่เป็นกรด แต่จะถูกทำลายได้งายโดยความร้อนถ้าอยู่ในสารละลายที่เป็นด่าง ประมาณ 60 เปอร์เซ็นต์ วิตามินบีหกในเลือดอยู่ในรูปของ Pyridoxal phosphate (PLP) เป็นโคเอนไซม์ที่ช่วยในปฎิกิริยาเมแทบอลิซึม ของกรดอะมิโน คาร์โบไฮเดรต และกรดไขมันในร่างกาย วิตามินบีหก ไม่มีกลิ่น มี รสเค็ม ละลายในน้ำได้ และละลายในสารละลายที่เป็นกรดและด่างปานกลาง แต่สลายตัวได้ง่ายเมื่อถูกแสงแดด วิตามินบีหกเป็นตัวสำคัญที่จะทำให้การดูดซึมของวิตามินบี12 เข้าสู่ร่างกายได้เต็มที่และสมบูรณ์ ,ช่วยวิตามินเอฟ ( Linoleic acid หรือ Unsaturated fatty acid ) ปฏิบัติหน้าที่ให้ได้ดีขึ้นข้อมูลโดยทั่วไป
วันอังคารที่ 8 กันยายน พ.ศ. 2552
Requirement and deficiency of Pantothenic acid
Metabolism and Function of Pantothenic acid
วันอาทิตย์ที่ 6 กันยายน พ.ศ. 2552
Pantothenic acid
กรดแพนโตเธนิค พบในอาหารทั่วไป ทั้งในพืชและสัตว์ ในอาหารพบว่า ส่วนใหญ่จะอยู่ใน bound form คือ ในรูปของ CoA หรือ acyl carrier protein อาจจะพบในสภาพอิสระได้บ้าง อาหารที่มีมากได้แก่ เนื้อสัตว์ ไข่แดง ตับ ไต น้ำนม ถั่วและพืชบางชนิด เช่น กล่ำปลี และมันเทศ มีน้อยในผักและผลไม้ทั่วไป วิตามนิชนิดนี้มีการสังเคราะห์โดยจุลินทรีย์ในลำไส้ใหญ่ได้บ้าง ในบางครั้งก็มีการเติมวิตามินนี้ลงในอาหารประจำวัน ในนมผสมที่ใช้เลี้ยงทารก ปริมาณของกรดแพนโตเธนิคในอาหารบางชนิดได้แสดงเป็นตัวอย่างในตารางแหล่งกำเนิด
กรดแพนโตเธนิค (Pantothenic acid)
กรดแพนโตเธนิคมีอยู่ทั่วไปในธรรมชาติและไม่เหมือนกับวิตามินบี ชนิดอื่น ๆ ที่ทำหน้าที่เป็นโคเอนไซม์ แต่กรดแพนโตเธนิคเข้าไปเป็นส่วนหนึ่งในอณูของ coenzyme-A (CoA หรือ CoASH) วิตามินี้ได้มีการศึกษาและรู้จักกันตั้งแต่ปี ค.ศ. 1945 โดย William และคณะได้สกัดแยกออกมาได้จากตับและตั้งชื่อว่า pantothenic acid ซึ่งมาจากภาษากรีกว่า “pantos” แปลว่า everywhere ต่อมาในปี ค.ศ. 1947 สามารถแยกได้บริสุทธิ์เป็นผลึก รู้สูตรโครงสร้างสังเคราะห์ได้และรู้ถึงหน้าที่ต่าง ๆ ของวิตามินนี้
สูตรเคมีและคุณสมบัติ
ในอณูของกรดแพนโตเธนิคประกอบด้วย pantoic acid จับอยู่กับ b-alaine ด้วย peptide bond ในธรรมชาติของคนหรือสัตว์ที่เลี้ยงลูกด้วยนมจะไม่มีเอนไซม์ที่ใช้สลาย bond ระหว่าง b-alanine กับ pantoic acid ได้ วิตามินนี้มีชื่อทางเคมีว่า (+) a , d - dihydroxy -b-b-dimethylbutyryl-b-alanine (น.น. อณู 219) มีลักษณะเป็นน้ำข้นสีเหลืองอ่อน เสียง่ายเมื่อถูกความร้อนกรดหรือด่างจะสลายได้ pantoic acid กับ alanine สภาพโดยทั่วไป
ตามธรรมชาติจะอยู่ในรูปของ D-isomer และจะมีคุณสมบัติเป็นวิตามินได้จะต้องเป็น dextrorotatory form เท่านั้น กรดแพนโตเธนิคที่อยู่ในสภาพแอลกอฮอล์เรียก “pantothenol” ซึ่งจะถูกดูดซึมได้ง่ายกว่าสภาพเป็นกรด เมื่องถูกดูดซึมแล้วจะเปลี่ยนเป็นกรดแพนโตเธนิคอย่างรวดเร็วในร่างกาย ละลายได้ดีในน้ำแต่ไม่ละลายในตัวทำละลายอินทรีย์ เช่น เบนซิน หรือ คลอโรฟอร์ม โดยปกติจะรวมกับแคลเซียมหรือโซเดียมเป็น calcium หรือ sodium pantothenate เป็นผลึกสีขาวละลายน้ำได้ดี คือประมาณ 2 กรัม ในน้ำ 2.8 ลิตร
Coenayme A ประกอบด้วย pantothenic acid, b-mercapto ethylamine และ adenosinediphosphate sulphydryl group ของกรดอะมิโน cysteine ที่อยู่ปลายข้างหนึ่งของ Coenzyme A จะเป็น active part ที่ทำหน้าที่ในปฏิกิริยาต่าง ๆ ที่เกี่ยวข้อง เช่นเป็น acyl carrier protein (ACP) ในการสังเคราะห์กรดไขมันขบวนการในการสังเคราะห์กรดแพนโตเธนิค ยังไม่เป็นที่ทราบแน่ชัด แต่พบว่าพวกจุลินทรีย์ในร่างกายสามารถสังเคราะห์วิตามินนี้ได้โดยการรวม b-alanine เข้ากับ dihydroxybutyric acid ก็จะได้วิตามินชนิดนี้ ซึ่งพบได้ในพวกสัตว์เคี้ยวเอื้องทั้งหลาย
วันเสาร์ที่ 5 กันยายน พ.ศ. 2552
Non-ruminant Animal Requirement of Niacin
การขาด (Deficiency) ตามปกติร่างกายจะไม่ขาดวิตามินนี้ แต่หากขาดสาเหตุของการขาดวิตามินนี้ส่วนใหญ่เนื่องจากได้รับไม่เพียงพอ เช่น รับประทานข้าวโพดเป็นอาหารหลักและรับประทานโปรตีนน้อย แม้ว่าข้าวโพดจะมีปริมาณวิตามินนี้อยู่ค่อนข้างมาก แต่วิตามินในข้าวโพดอยู่ในรูปแบบที่ไม่สามารถดูดซึมเข้าสู่ร่างกายได้ และข้าวโพดมีปริมาณของกรดอะมิโนทริปโทเฟนซึ่งเป็นสารตั้งต้นของการสังเคราะห์วิตามินนี้ต่ำอีกด้วย ในสุกรที่มีการขาดวิตามินนี้จะมีอาการคือผิวหนังหนา หยาบ มีแผลในปากและในทางเดินอาหาร ท้องเสีย ในไก่เกิด perosis ลิ้นอักเสบ และผิวหนังอักเสบ ในสัตว์ที่ขาดไนอาซินจะมีแผลในปาก แผลที่เยื่อเมือก ทำให้เป็นสีคล้ำ น้ำลายเหนียว ลมหายใจมีกลิ่นเหม็น และเป็นแผลเปื่อยตามตัว มี ulcerative lesion และผิวหนังอักเสบ (demartitis) นอกจากนี้ยังมีท้องเสีย (diarrhoea) โลหิตจาง (anemia) เบื่ออาหาร (inappetence) และทำให้การเจริญเติบโตช้า การขาดวิตามินนี้ทำให้เกิดโรคปากนกกระจอก ซึ่งสามารถอธิบายได้โดยอาการใหญ่ ๆ 3 อาการที่เรียกว่า “3 D” คือ ผิวหนังอักเสบ (dematitis), ท้องเดิน (diarrhea) และสมองเสื่อม (dementia) และในกรณีที่เป็นมาก ๆ อาจถึงตายได้ (4D = death) อาการผิวหนังอักเสบจะเป็นผื่นแดงและหยาบ โดยเฉพาะบริเวณที่ถูกแสงแดด, ปากและลิ้นอักเสบ ซึ่งอาจทำให้รับประทานอาหารไม่ได้, อาการท้องเดินเกิดขึ้นเนื่องจากเกิดการอักเสบและเป็นแผลของเยื่อบุทางเดินอาหาร ส่วนอาการทางสมอง เช่น สมองเสื่อม, สับสน, วิตกกังวล, ซึมเศร้า เป็นผลจากการเสื่อมและตายของเซลล์ประสาทในสมองส่วนกลางและเส้นใยประสาทไขสันหลัง
ความเป็นพิษ (Toxicity) ปกติร่างกายจะไม่แสดงอาการความเป็นพิษ แต่จากรายงานของ NRC (1987) พบว่าการได้รับ nicotinic acid และ nicotinamide ในอาหารในปริมาณที่มากกว่า 350 mg/kg ของน้ำหนักร่างกาย/วัน จะเกิดการเป็นพิษได้
Function of Niacin (B3)
Transport and Metabolism of Niacin
การขนส่ง (Transport) ไนอาซินที่อยู่ในระบบไหลเวียนจะอยู่ในสภาพ unbound acid และ amide เข้าสู่เนื้อเยื่อต่าง ๆ โดย passive diffusion แต่มีบางเนื้อเยื่อที่มีการขนส่งแบบ facilitated diffusion สำหรับการขนส่งไปที่สมองจะเป็นแบบ energy-dependent transport system ที่เซลล์สมองจะมีการขนส่ง nicotinamide ได้ดีเป็นพิเศษ เมื่อไนอาซินเข้าสู่เซลล์ของเนื้อเยื่อในร่างกายแล้วจะเปลี่ยนไปเป็น NAD(H) และ NADP(H) ส่วนใหญ่พบในสภาพ NAD(H) และ NAD+ มากกว่าและถ้าเป็น NADP+ ก็จะอยู่ในสภาพ NADPH เป็นส่วนใหญ่ดังตาราง เมแทบอลิสม (Metabolism) การสังเคราะห์ไนอาซินจาก tryptophan สามารถเกิดขึ้นได้ในร่างกายและในสัตว์ทุกชนิด ขั้นตอนที่สำคัญในขบวนการสังเคราะห์นี้อยู่ที่การเกิด oxidative cleavage ของ tryptophan pyrrole ring ด้วยเอนไซม์ tryptophan pyrrolase และได้สาร N-formyl kynurenine จากนั้นก็จะเกิดปฏิกิริยาอีกหลายขั้นตอนจนสุดท้ายได้กรดนิโคตินิก และเปลี่ยนไปเป็น NAD+ ด้วย NAD+ synthetase ในการเปลี่ยน tryptophan ไปเป็น NAD+ เป็นขบวนการที่ต้องใช้ tryptophan 60 มิลลิกรัมจึงจะเปลี่ยนไปเป็นกรดนิโคตินิกได้ 1 มิลลิกรัม จึงมีการเสนอแนะว่าการรับประทานอาหารตามปกติร่างกายสามารถสังเคราะห์ไนอาซินได้เพียงพอกับความต้องการได้ จะเห็นว่า pyridoxine หรือวิตามินบีหก ทำหน้าที่สำคัญ ๆ ในปฏิกิริยาถึง 4 ขั้นตอนของเอนไซม์ pyridoxal phosphate-dependent enzymes คือ transaminase และ kynureninase ดังนั้นถ้ามีการขาด pyridoxine จะมีผลทำให้ปฏิกิริยาต่าง ๆ ดังกล่าวมาแล้วเกิดได้ไม่ดี คือจะทำให้ได้ 3-hydroxyanthranilic acid ที่จะเปลี่ยนไปเป็น nicotinic acid ได้ลดน้อยลง และทำให้มีสาร intermediate ตอนต้น ๆ ของปฏิกิริยาขับออกมามากทางปัสสาวะ อีกประการหนึ่งการขาดสังกะสีก็จะทำให้การเปลี่ยน tryptophan ไปเป็นกรดนิโคตินิกได้ไม่ดีด้วย ทั้งนี้เพราะสังกะสีเป็นโคแฟคเตอร์ของ pyridoxal phosphate ที่ใช้ในปฏิกิริยาดังกล่าว สารสุดท้ายของการสลาย pyridine nucleotide คือ 1-methyl nicotinamide ซึ่งจะถูกอ๊อกซิไดส์ต่อไปได้สารอีกหลายชนิดที่ละลายน้ำได้ดีและขับออกทางปัสสาวะ เช่น 1-methyl-6-pyridone 3-carboxamide ส่วนกรดนิโคตินิกและ nicotinamide จะขับถ่ายออกมาในปัสสาวะปริมาณเล็กน้อยเท่านั้น ไนอาซินมีหน้าที่สำคัญ ๆ ในร่างกายหลายประการคือ
1. Coenzyme functions:
Nicotinamide เป็นส่วนประกอบของโคเอนไซม์ 2 ชนิด ที่ทำหน้าที่ขนส่ง hydrogen คือ NAD+ และ NADP+ โคเอนไซม์ทั้ง 2 ชนิดนี้จะไปรวมกับ apoenzyme เป็นเอนไซม์ dehydrogenase ประมาณ 200 ชนิด เอนไซม์ดังกล่าวนี้มีความสำคัญและจำเป็นในการทำหน้าที่เกี่ยวกับเมตาบอลิสมของคาร์โบไฮเดรต กรดไขมัน และกรดอะมิโนที่เกิดขึ้นภายในเซลล์ NAD+ และ NADP+ จะรับ H จาก substrate แล้วส่งต่อไปให้ acceptor โดย H ที่มาจับนั้นเป็น hydride ion (H-) ซึ่งจะทำหน้าที่เป็นตัวพา 2 อิเลคตรอน ในการทำหน้าที่นี้จะเห็นได้ว่าส่วนสำคัญอยู่ที่ nicotinamide ring ในขณะที่อยู่ในภาวะออกซิไดส์จะมีประจุบวก (+) และเมื่อรับมา 2H จาก substrate ก็จะอยู่ในสภาพรีดิวซ์2. Metabolic roles :
ทั้ง NAD (H) และ NADP (H) มีความคล้ายคลึงกันในด้านสูตรโครงสร้าง แต่ทั้ง 2 ชนิดมีความแตกต่างกันในบทบาทของการทำหน้าที่ร่วมกับเอนไซม์ dehydrogenase ซึ่งมีความจำเพาะเฉพาะตัวจะเห็นได้จากปฏิกิริยาที่มีการใช้ NAD (H) ในสภาพของออกซิไดส์ (NAD+) จะทำหน้าที่เป็นตัวรับ H แล้วเปลี่ยนไปเป็น NADH จากนั้นจะส่งต่อ H ไปยัง respiratory chain ในไมโตคอนเดรีย เพื่อผลิต ATP ให้แก่เซลล์ ส่วน NADP+ จะทำหน้าที่เป็น co-dehydrogenase ในปฏิกิริยาออกซิเดชั่นที่เกี่ยวกับพลังงานของร่างกาย และ NADP (H) ส่วนใหญ่จะใช้ NADPH เป็น reducing equivalents ในปฏิกิริยาในการสังเคราะห์สารในร่างกาย เช่น การสังเคราะห์กรดไขมัน และ steroids นอกจากนี้ NADP+ ยังเป็น co-dehydrogenase ที่ใช้ในปฏิกิริยาออกซิเดชั่นของ glucose-6-phosphate ใน pentose phosphate pathway อีกด้วย3. In glucose toterance factor : จากการศึกษาในยีสต์พบว่ามีสารชนิดหนึ่งที่มีไนอาซินเป็นส่วนประกอบและมีธาตุโครเมียมด้วย เรียกว่า chromium containing “glucose tolerance factor” ซึ่งสารชนิดนี้ช่วยทำให้มีการตอบสนองต่อฮอร์โมน insulin ได้ดี
Source and Absorption of Niacin
แหล่งกำเนิด (Sources)ทั้งกรดนิโคตินิกและนิโคตินาไมด์นี้ ส่วนใหญ่ได้จากการสังเคราะห์ สำหรับในอาหารพบว่ามีไวตามินนี้มากในยีสต์ รำข้าว ถั่วต่าง ๆ พบมากในผลิตภัณฑ์จากสัตว์ เช่น เนื้อหมู, เนื้อวัว, ปลา, ไก่, นม, และไข่ เป็นต้น วิตามินนี้ละลายได้ค่อนข้างดีในน้ำร้อน, ไม่ละลายในน้ำเย็น, มีความทนต่อทุกสภาวะ อาทิเช่น ความเป็นด่าง, ความร้อน, แสงสว่าง และปฏิกิริยาออกซิเดชัน เป็นต้น ร่างกายสามารถสังเคราะห์ไนอาซินจาก tryptophan ได้ โดยปกติถ้าร่างกายได้รับอาหารที่มี tryptophan ตามต้องการและร่างกายมีเมตาบอลิสมตามปกติ ก็ถือว่าร่างกายได้รับไนอาซินเพียงพอไปด้วย เหตุนี้เองการบอกคุณค่าหรือปริมาณไนอาซินในอาหารจึงมักบอกเป็นค่าของ niacin equivalent (NE) ในคนปกติ tryptophan 60 มิลลิกรัม จะเปลี่ยนไปเป็นกรดนิโคตินิกได้ 1 มิลลิกรัม ดังนั้น NE ของอาหารจะมีค่าเท่ากับ 1 มิลลิกรัม หรือ 60 มิลลิกรัมของ tryptophan ที่มีในอาหาร
การดูดซึม (Absorption)
เมื่อรับประทานวิตามินนี้ในรูปกรดนิโคทินิกหรือนิโคทินาไมด์จะถูกเปลี่ยนให้อยู่ในรูปของนิโคทินาไมด์ทั้งหมด และถูกดูดซึมเข้าสู่ร่างกายที่ลำไส้เล็กส่วนต้นโดยกระบวนการที่ไม่ต้องใช้พลังงาน จากนั้นจะถูกขนส่งไปทั่วร่างกายในกระแสเลือด และเก็บสะสมไว้ที่ตับ, หัวใจ และกล้ามเนื้อ ในปริมาณที่ไม่มากนัก ต้นตอของไนอาซินจากอาหารจะพบว่าส่วนใหญ่อยู่ในสภาพของ preformed niacin, NADH และ NADPH ซึ่งจะถูกสลายด้วยเอนไซม์ pyrophosphatase ใน lumen ของลำไส้เล็กได้เป็น nicotinamide ribonucleotide และ riboside แล้วถูกดูดซึมที่กระเพาะและลำไส้อย่างรวดเร็ว ถ้าระดับของไนอาซินต่ำ ๆ จะมีการดูดซึมแบบ Na+-dependent facilitated diffusion process และในทางตรงกันข้ามถ้ามีไนอาซินปริมาณสูง ๆ ก็จะมีการดูดซึมแบบ passive diffusion เมื่อร่างกายได้รับไนอาซินปริมาณสูง เช่น ครั้งละ 3 กรัม จะพบว่ามีการขับออกทางปัสสาวะถึง 85% นอกจากนั้นยังพบว่ากรดนิโคตินิกในรูป ester จะอยู่ในกระแสเลือดได้นานกว่าชนิดอื่น ๆ